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Abstract— The past decades have seen a proliferation of
middlebox deployment in various scenarios, including backbone
networks and cloud networks. Since flows have to traverse specific
service function chains (SFCs) for security and performance
enhancement, it becomes much complex for SFC routing due
to routing loops, traffic dynamics and scalability requirement.
The existing SFC routing solutions may consume many resources
(e.g., TCAM) on the data plane and lead to massive overhead
on the control plane, which decrease the scalability of middlebox
networks. Due to SFC requirement and potential routing loops,
solutions like traditional default paths (e.g., using ECMP) that are
widely used in non-middlebox networks will no longer be feasible.
In this paper, we present and implement a scalable and flexible
middlebox policy enforcement (SAFE-ME) system to minimize
the TCAM usage and control overhead. To this end, we design
the smart tag operations for construction of default SFC paths
with less TCAM rules in the data plane, and present lightweight
SFC routing update with less control overhead for dealing with
traffic dynamics in the control plane. We implement our solution
and evaluate its performance with experiments on both physical
platform (Pica8) and Programming Protocol-independent Packet
Processors (P4) based data plane, as well as large-scale sim-
ulations. Both experimental and simulation results show that
SAFE-ME can greatly improve scalability (e.g., TCAM cost,
update delay, and control overhead) in middlebox networks,
especially for large-scale clouds. For example, our system can
reduce the control traffic overhead by about 85% while achieving
almost the similar middlebox load, compared with state-of-the-
art solutions.

Index Terms— Middlebox networks, network function virtual-
ization, scalability, default path, tag.
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I. INTRODUCTION

NETWORK Functions (NFs) such as firewalls, deep packet
inspection, load balancer, etc. are provided by specialized

network devices or software implementation (i.e., Network
Function Virtualization, NFV) [2]. We collectively refer to
these specialized/virtualized devices as middleboxes (MBs) for
simplicity [2]. MBs have been widely deployed in various net-
working scenarios including cloud computing environments,
campus networks, backbone networks and data centers [3].
Typically, network flows go through several NFs in a specific
order to meet its processing requirements, also called Service
Function Chaining (SFC) [2]. We call a network with mid-
dlebox deployment and fine-grained middlebox policies as a
‘middlebox network’.

Recently, with the advantage of the logically centralized
control, software defined networking (SDN) has become an
emerging technology to cope with complex SFC routing [2],
[4], [5]. Under the SDN framework, although SRAM is
capable for SFC routing, the switches often use TCAM-based
forwarding tables to achieve over 20× faster rule lookup or
wildcard rule matching speed [6]. However, TCAMs are 400×
more expensive and consume 100× more power per Mbit
than the RAM-based storage on switches [7]. Considering
the processing speed, price and power consumption of the
switch, most of today’s commodity switches are equipped
with a limited number of TCAM-based entries. Thus, it is
essential to save the number of TCAM-based entries used for
routing [8], [9]. In fact, besides flow routing, it needs to install
extra flow entries on switches to redirect traffic to MBs/NFs for
processing [2], [4]. As a result, SFC routing requires more flow
entries compared with traditional routing, which accordingly
increases significant difficulty for both control plane scalability
and data plane scalability.

• Control Plane Scalability. Under the SDN framework,
the controller is responsible for managing the whole
network, e.g., monitoring the network status and deter-
mining/updating the SFC routing [10]. Thus, in a large-
scale network, when encountering network failures or
network performance degradation, the controller needs
to update many flow entries for network reconfiguration,
which may result in high control overhead [10], [11].

• Data Plane Scalability. Due to the limited size of
the TCAM-based forwarding table, it is another chal-
lenge to accommodate a large number (e.g., 106 in
a moderate-sized data center [12]) of flows using
only a limited size of TCAM-based forwarding entries,
especially with SFC requirement. Some SDN switches
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(e.g., Noviswitch [13]) adopt RAM-based flow tables for
flow forwarding. However, RAM-based flow tables may
significantly increase the lookup latency [8]. In addition,
a large number of flow entries may increase the delay for
switches to modify/match entries [9], [14].

Though the traditional solutions, e.g., default paths [15],
can achieve better system scalability and deal with a large
number of flows in traditional networks, these solutions cannot
be applied directly in MB networks for the following reasons.
First, SFC routing will cause routing loops, which is the main
difference from traditional networks (Section II-A). However,
default paths cannot deal with routing loops. Second, flows
with the same egress switch (or destination) will be processed
in the same way by default paths, but they may require
different SFCs. How to setup default paths for different SFC
requirements remains a challenging problem.

To solve complex SFC routing, several works have designed
efficient solutions for MB networks [2], [4], [16], [17].
However, these solutions still face several critical disad-
vantages. First, these solutions often install rules for flows
with the granularity of ingress-egress switch pairs. If a net-
work contains several thousands of ingress/egress switches
(e.g., NTT Hong Kong Financial Data Center contains more
than 7000 racks [18]), there are millions of ingress-egress
switch pairs [18], [19]. Consequently, it requires millions
of forwarding entries on a switch in the worst case. When
encountering network failures or network performance degra-
dation, these solutions will encounter a large response time
for network reconfiguration due to the low rule installation
speed, which will be validated through experimental testing
in Section VI. Second, existing proactive-based solutions
(e.g., [2]) usually install rules for flows in advance based on
traffic estimation. Thus, they cannot deal with bursty traffic
well and significantly decrease the users’ QoS [12]. Third,
existing reactive-based solutions (e.g., [4]) mainly rely on the
controller to perform real-time routing calculation and rule
installation for new arrival flows, which may lead to serious
per-flow communication/computation overhead on the control
plane [10].

To conquer the above challenges, we design the scalable and
flexible middlebox policy enforcement system (SAFE-ME).
The key idea behind SAFE-ME is to configure three types
of tables in the switch’s data plane, namely the SFC table,
NF table, and Flow table. The SFC table maintains the SFC
policy information and assigns tags to packets that match
certain policies. The NF table provides the path information
to the NFs by checking the packet tags. The Flow table is
on a per-switch basis to forward packets to their destinations,
similar to those in traditional routers/switches. We design the
smart tag operations for construction of default SFC paths,
and present lightweight SFC routing update for dealing with
traffic dynamics. Both experimental and simulation results
show that SAFE-ME reduces flow entries, control overhead,
and update delay by >80%, compared with state-of-the-art
solutions.

The rest of this paper is organized as follows. Section II
analyzes the limitations of the previous SFC routing solutions
and gives the motivation of our research. We present the

Fig. 1. Traffic from s1 to s3 has to traverse NF1 and traffic from s2 to
s3 has to traverse NF1 and NF2. Different requests with the same egress
switch (or destination) will traverse different SFCs. However, the switch-based
(or destination-based) default path solution cannot distinguish the traffic from
s1 or s2.

overview and workflow of the SAFE-ME system in Section III.
Sections IV and V describe the data plane design and the
control plane design of SAFE-ME, respectively. We implement
SAFE-ME on a small-scale testbed and large-scale simulations
in Section VI. We conclude this paper in Section VII.

II. BACKGROUND AND MOTIVATION

In this section, we first introduce the traditional network
forwarding mechanism based on the default path and prove
its inapplicability for SFC routing in Section II-A. Then we
review the existing SDN-based SFC routing solutions and
analyze their limitations in Section II-B.

A. Inapplicability of Traditional Default Path Solutions

A natural strawman solution for flow routing with
less forwarding entries is deploying default paths
(e.g., using switch-based or destination-based OSPF/ECMP
methods [15], [20]). However, in middlebox networks, there
may exist routing loops in the forwarding paths due to SFC
requirements. In addition, flows with the same egress switch
(or destination) may traverse different SFCs, which cannot
be satisfied by default paths. Thus, traditional default paths
cannot solve the SFC routing problem with fine-grained
middlebox policies.

We give an example to illustrate the difference of flow
routing between traditional networks and middlebox networks.
As shown in Fig. 1, if we forward traffic from server
s1 to server s3 in the traditional network (i.e., without any
SFC requirement), we can install one entry (i.e., dst =
s3, output = 2) on each of switches v1 and v2, so that traffic
will be forwarded through path s1 − v1 − v2 − s3.

However, in middlebox networks, we may require traffic
from servers s1 to s3 to go through NF1 for security purposes.
The forwarding path is s1 − v1 − NF1 − v1 − v2 − s3.
We observe that there exists a loop (i.e., one packet will
traverse v1 twice). Thus, we cannot simply adopt the above
destination-based routing method for such SFC routing. One
may say that this problem can be solved by combining with
the port information, e.g., the ingress port of each flow.
For example, for switch v1, we can insert two destination-
based entries: 1) dst = s3 and inport = 1, output = 3;
2) dst = s3 and inport = 3, output = 2. However, this
solution does not work in a more complex scenario: the
operator may specify all traffic from server s1 to s3 to go
through NF1 (i.e., s1 − v1 −NF1 − v1 − v2 − s3 ) and traffic
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TABLE I

COMPARISON OF THE ADVANTAGES AND DISADVANTAGES OF EXISTING SOLUTIONS

from server s2 to s3 through NF1-NF2 (i.e., s2 − v2 − v1 −
NF1 − v1 − v2 − NF2 − v2 − s3). These two flows/requests
with the same destination s3 will go through different service
function chains. The destination-based routing solution cannot
distinguish the traffic from s1 or s2. Consequently, we cannot
determine the proper actions for traffic from v1 to v2. Prior
work [2] shows that nearly 15% SFC routing paths contain
loops. Hence tradition default path methods cannot address
the SFC routing challenges.

B. Limitations of Prior SFC Routing Solutions

Although packet tags help to solve the routing loops, it may
be flow-entry consuming if each 5-tuple flow is attached
with a tag. Thus, many works have leveraged the per-request
routing strategy to reduce the flow-entry consumption and
achieve load balancing [2], [23], [24]. Specifically, a request
is identified by three elements, ingress switch, egress switch
and SFC. That is, all flows with the same ingress switch,
egress switch and SFC requirement, will be aggregated into
one request. For each newly-arrived request, the corresponding
ingress switch reports the packet header information to the
controller for requesting forwarding strategy. The controller
then computes a proper routing path satisfying the service
policy and replies the rule installment instructions to switches
along the routing path. Although some 5-tuple flows are
aggregated into a request, this solution still requires a large
number of entries and leads to massive control overhead even
in a moderate-size network. For example, in a practical data
center network with 1,000 leaf switches, there may exist
O(1, 000 × 1, 000) switch pairs. Even if there is only one
MB in the network (or one SFC requirement per switch pair),
it may require 1M entries on a switch in the worst case,
which may violate today’s switch capabilities or result in
huge energy consumption and long update delay [8]. When
multiple SFC requirements are posed for each switch pair,
it becomes more serious. Meanwhile, since many rules will
be installed and modified under per-request routing scheme,
the communication/computation overhead on the control plane
is too high, which will be validated in Section VI.

To reduce the TCAM table cost and control overhead, some
research attempts to simplify the SFC processing in middlebox
networks by constructing a consolidated platform [25]–[28]
[29], [30]. For example, CoMB [27] is a network function
consolidation platform, where a flow/request can be processed
by all required network functions on a single hardware
platform, thus simplifying the SFC routing. Metron [25],
MiddleClick [26], and OpenBox [28] also merge similar
packet processing elements into one. Slick [29] and SNF [30]
combine the consolidated platform with NF placement and
SFC rule decision making. In Fig. 1, they may integrate

Fig. 2. System overview. In the data plane, each switch maintains three
tables: SFC table, NF table and Flow table. The control plane consists of two
new modules, default path construction and lightweight SFC routing update,
to implement routing strategies.

NF1 and NF2 into one mixed NF . All traffic will traverse the
mixed NF and be processed automatically by corresponding
functions. Though the consolidated platform simplifies the
SFC processing, as described in the above paragraph, it still
requires a large number of forwarding entries if without
proper routing strategies. In fact, our proposed solution tries
to optimize the route selection for middlebox networks, and
can be combined with the consolidated platform, which will
be discussed in Section IV-E.

From Table I, we observe that all existing methods can only
address partial challenges of the SFC routing in middlebox
networks. In other words, it seems that none of them can
satisfy SFC requirements with better routing performance,
lower control overhead and fewer flow rules consumption.
Thus, in this paper, we design an efficient architecture for
SFC routing (i.e., SAFE-ME) so as to satisfy the above
requirements.

III. SYSTEM DESIGN

To solve the above challenges in middlebox networks,
we propose the scalable and flexible middlebox policy
enforcement system (SAFE-ME). We present the overview of
SAFE-ME in Section III-A, describe the packet processing
procedure in Section III-B, and give an example to illustrate
SAFE-ME in Section III-C.

A. System Overview

As shown in Fig. 2, SAFE-ME consists of data plane and
control plane designs. The proposed architecture addresses the
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Fig. 3. Illustration of packet processing procedure. When a packet arrives at a switch, the switch matches the header with SFC Table, NF Table and Flow
Table in sequence. In this way, the packet will be forwarded to destination while obeying SFC constraints.

challenges of scalable SFC routing in middlebox networks by
embedding the SFC policy (as a tag) into the packet header.
We first give an outline of the data plane and the control plane.

Data Plane of middlebox networks consists of SDN
switches, NFs, servers and links. The SDN switches are
responsible for forwarding packets according to installed rules
in switch tables. Each NF unit processes the received packets.
As specified in the OpenFlow standard [31], each SDN switch
contains multiple tables. We divide these tables into three parts
with different roles, called SFC Table, NF Table and Flow
Table, respectively. We will describe the design of the data
plane in Section IV.

• SFC Table is used to store the SFC policy for each
request. When a request arrives at an ingress switch, this
switch will match the packet header with the SFC Table,
and embed the matched SFC policy (as a tag) into the
packet header. In other words, the packet header will
contain SFC policy through matching SFC Table on the
ingress switch.

• NF Table stores the next-hop information of the path from
this switch to each NF. Through matching NF Table, the
packet will be forwarded to the required NFs in sequence
according to the SFC policy.

• Flow Table is responsible to store the next-hop informa-
tion of the path (e.g., default path or per-request path)
from this switch to each egress switch in the network.
After the packet is processed by all required NFs, it will
be forwarded to destination through matching the Flow
Table.

Control Plane is responsible to manage the whole net-
work. We mainly focus on two new modules in the control
plane: Default Path Construction (DPC) and Lightweight SFC
Routing Update (LSRU). Leveraging the network information
collected by switches and policy specification issued by net-
work administrator, DPC computes the default paths from each
switch to each egress switch or each NF. To avoid the possible
congestion due to traffic dynamics, we also design LSRU to
periodically re-compute near-optimal routing strategy based on
current network conditions. The results will be encapsulated
into Flow-Mod commands to install corresponding rules on
the switches. We will introduce the design of the control plane
in Section V.

B. Packet Processing Procedure

We then describe the packet processing procedure of SAFE-
ME. As shown in Fig. 3, the controller initially configures the
SFC Table, NF Table and Flow Table based on the network
information with a proactive manner. When a packet arrives
at a switch, the switch first matches the packet header with
the SFC Table. If there is a match, the switch will write the
SFC policy (as a tag) into the packet header, which means the
switch is the ingress switch of this packet and the packet is
required to be processed by a set of NFs. Next, if there is a
match in the NF Table, it will be forwarded to next hop from
this switch to corresponding NF, which means the packet has
to be processed by this matched NF. Otherwise, the packet
need not traverse NFs or have traversed all required NFs,
and will be forwarded to the destination. Then, the packet
follows the traditional processing procedure. There are two
cases. If there is a match in the Flow Table, this packet will
be forwarded to the next hop according to the matching result.
Otherwise, no match exists in the Flow Table. This packet will
be reported to the controller using existing OpenFlow APIs.
Note that, the switch connected with NF(s) is responsible to
modify the tag in the packet header by tag shifting, which will
be introduced in Section IV. In this way, after the packet is
processed by the NF and returns to the connected switch, the
packet will be forwarded to next required NF through matching
another NF entry or forwarded to the egress switch through
matching the Flow Table.

C. Illustration of SAFE-ME Design

We give an example for better understanding the packet
processing. The controller initially computes the default path
from each switch to each egress switch (or NF) and installs
the default paths to egress switches (or NFs) on Flow Tables
(or NF Tables). Besides, the administrator may specify some
policies for flows. For example, in Fig. 4, the administrator
specifies that traffic from subnet 10.1.1.0/24 should traverse
an SFC: Firewall-IDS-Proxy for security benefits. Thus, the
controller installs an SFC entry on ingress switch v1 for this
subnet in Fig. 4.

When a request from subnet 10.1.1.0/24 arrives at the
ingress switch, v1 will match this packet header with the
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Fig. 4. Illustration of packet processing in SAFE-ME and rule installment
on switches. The administrator specifies that traffic from subnet 10.1.1.0/24
should traverse a service function chain: Firewall-IDS-Proxy for security
benefits. As a result, the packet will be forwarded by path “s1 − v1 − FW−
v1 − v2 − v3 − IDS − v3 − v2 − v1 − Proxy − v1 − v2 − v3 − s2.”

SFC table, and write the tag (i.e., the SFC policy:
“FW-IDS-Proxy”) into the packet header. The packet will then
be matched with the NF Table (i.e., “match=FW”). Since
v1 is connected with a firewall, this switch executes shift
operation (which will be introduced in Section IV) to delete the
“FW-” information in the tag and then forwards this packet to
the firewall through outport 2. After the packet is processed by
the firewall and returns to switch v1, this switch will match the
NF entry “match=IDS and output=4”, and forward this packet
to switch v2, which will then forward it to v3 by the NF Table.
Switch v3 continues to forward this packet to IDS according
to the NF Table. In this way, this packet will be forwarded
through path “s1−v1−FW−v1−v2−v3−IDS−v3−v2−v1−
Proxy−v1−v2−v3−s2”. That means, by leveraging the design
of the NF/Flow Tables, SAFE-ME can proactively compute the
default paths from each switch to each egress switch or each
NF and stores this information in NF/Flow Tables proactively.
In this way, we only need to install one special SFC entry on
the ingress switch for each new arrival request, and the other
entries can be shared by different requests. On the contrary,
as illustrated in Section II-B, per-request routing solutions may
consume several special entries for each new arrival request.
Thus, SAFE-ME will greatly reduce the use of rules and the
control overhead. Note that, the process for the return traffic
is similar as the incoming traffic. Thus, we only depict the
routing tables and describe the process for the incoming traffic
for simplicity.

IV. DATE PLANE DESIGN

As described in Section III-B, multiple entry tables and
tag operations are two core issues in the data plane that
may affect the forwarding performance. Thus, this section
mainly designs the table pipeline process and tag operations
(e.g., tag embedding and deleting) on both OpenFlow and

Fig. 5. Pipeline processing in OpenFlow switches. Each switch contains
multiple tables, which are sequentially numbered. Packets can match theses
tables in sequence.

P4 [32] switches. Through these operations, SAFE-ME can
forward requests using fewer rules and lower control overhead
while satisfying SFC policies.

A. Pipeline Process in OpenFlow Switches

As specified by the OpenFlow standard [31], the pipeline
of every OpenFlow switch consists of multiple forwarding
tables. Each table contains a certain number of entries. Many
commercial switches (e.g., Pica8 3297 switches [33], barefoot
switches [34]) also contain such pipeline of multiple tables.
As illustrated in Fig. 5, these tables are sequentially numbered,
starting from 0. Each packet is first matched against entries of
table 0. If an entry is matched, the corresponding instruction
will be executed. These instructions may modify the packet
header, forward the packet to a specific port or direct the
packet to another table (using the Goto-Table Instruction).
If no matched entry is found, a table miss occurs. The
optional instructions in the table-miss entry include dropping
the packet, passing it to another table, or reporting it to the
controller.

We leverage the character of pipeline processing to
implement the packet processing in SAFE-ME. Specifically,
we define Table 0 as the SFC Table, which stores the SFC
policy. When a packet arrives at the ingress switch, it will
embed the tag (i.e., the matched SFC policy) into the packet
header by matching the SFC table. Then, the ingress switch
directs the packet to further match the NF Table. We define
Table 1 as the NF Table. If there is a match in the NF Table,
the switch will forward the packet to the corresponding port.
If there is no match, the switch will direct the packet to the
Flow Table for traditional routing (e.g., we define Table 2 as
the Flow Table). Leveraging the pipeline processing, the switch
will first match the packet header with the SFC table, then
with the NF table, and finally with the Flow table in the end
(if necessary). We describe the detailed tag operations in the
following sections.

B. Tag Embedding Through SFC Table

In the data plane, there may exist many units of NFs.
The controller uses unique identifies (e.g., 1, 2, . . . , m) to
distinguish these NFs. Recent studies show that the number
of NFs is similar to the number of switches [35], [36] and
the length of SFC is usually no more than 5 in a moderate-
size network. For the sake of convenience, we use 8 bits to
represent an NF and use 40 bits to indicate an SFC. In this way,
we design a high-level SAFE-ME header format, as shown in
Fig. 6. Specifically, we design (1) Tag Match Field to store the
first NF in the SFC and (2) Tag Storage Field to embed the
remaining NF(s) of the SFC in the reverse order. Moreover,
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Fig. 6. The high-level design of the SAFE-ME header format. Tag
storage/match fields and flag bit in a packet. Flag bit field indicates whether
the packet has been embedded a tag or not. Tag Match Field stores the first
NF in the SFC and tag storage field embeds the remaining NF(s) in the SFC.
The overall bandwidth cost for embedding tags is negligible.

we use 1 flag bit to denote whether the packet has been
embedded a tag or not. This header format may be slightly
adjusted according to the specific implementation platform.
Note that, in data center networks, the average packet size is
around 724 bytes (i.e., 5792 bits) [37]. Even in a large-scale
network, we may need to use 11 bits to identify 2047 different
NFs and the maximum length of SFCs may be 10 [38]
(i.e., the cost is 11 × 10 + 1 = 111 bits), the bandwidth cost
for embedding a tag is still negligible (< 2%).

To illustrate the SFC policy (or tag) embedding process,
we revisit the example in Fig. 4. We use 0 × 01, 0 × 02,
0 × 03 to denote the FW, Proxy, IDS units, respectively.
In this way, the service function chain can be encoded into
0 × 01-0 × 03-0 × 02. To embed this tag, Tag Match Field
records the first NF (e.g., 0 × 01) and Tag Storage Field
stores the remaining NFs in the reverse order (e.g., 0× 0203).
In other words, the SFC entry on switch v1 can be expressed
as “ip_src = 10.0.1.0/24, F lag_bit = 0, actions =
{Tag_Match_Field = 0 × 01, T ag_Storage_Field = 0 ×
0203, F lag_bit = 1, Goto_Table : NF_Table}”. When a
packet from subnet 10.0.1.0/24 arrives at switch v1, it will
match the entry in the SFC Table. The actions will modify the
Tag Match Field to 0×01, Tag Storage Field to 0×0203 and
set the Flag Bit to 1. As a result, the SFC policy is successfully
embedded in the packet header.

C. Tag Shifting Through NF Table

The switch will then match the Tag Match Field (i.e., the
first NF) in the NF Table, and forward the packet to the
corresponding port if there is a matching entry. Moreover,
if the switch is directly connected with the NF as specified
by the Tag Match Field, it will take the following opera-
tions: (1) catch the first NF information of the rest SFC
from the Tag Storage Field (i.e., shift_right operation); and
(2) reset the Tag Match Field. We revisit the example in
Fig. 4. After embedding a tag, the switch will match the packet
header in the NF table about FW (i.e., 0 × 01). There is a
matching NF entry: “Tag_Match_Field = 0×01, actions =
shift_right, output = 2”, which means the switch will shift
right the tag and forward the packet to FW through port 2.
Note that, the shift_right operation will bitwise shift right
of Tag Storage+Match Field by 8 bits. After the shift_right
operation, Tag Match Field and Tag Storage Field become
0×03 and 0×02, which means the packet still has to traverse
two NFs (i.e., 0 × 03-0 × 02). When the packet returns to
switch v1 from FW, the switch will match the NF table with
the match field “Tag_Match_Field = 0 × 03”, and forward
to IDS through port 4. In the end, the packet will be forwarded
to the destination while obeying SFC policy.

Fig. 7. The SAFE-ME header format in P4 switches.

D. SAFE-ME Design With P4 Switches

Compared to using existing protocol headers, adding a
customized new SAFE-ME header can make the SAFE-ME
implementation more applicable and flexible. Thus, we realize
our design with a highly programmable data plane consisting
of the Programming Protocol-independent Packet Processors
(P4) [32] switches as a case study. Leveraging the flexibility
of the P416 programming language [39], SAFE-ME can easily
be implemented with P4 switches by adopting a new header
after the Ethernet header. The new SAFE-ME header format
is depicted in Fig 7.

To better fit into the existing network protocol stack
(e.g., TCP/IP), a few tunings are taken towards the SAFE-ME
header format mentioned in Fig 6. The “Tag Storage Field”
and “Tag Match Field” are not modified. To preserve the
“Ether Type” value in the Ethernet header of the original
packet, a 16-bits “Preserved Ether Type” field is appended in
the new SAFE-ME header. We also choose an experimental
“Ether Type” value “0 × 0123” for the Ethernet header to
indicate the existence of the following SAFE-ME header. This
particular “Ether Type” value provides the same usage as the
“Flag bit” in the original SAFE-ME header. Thus, the “Flag
Bit” field is removed.

Based on the SAFE-ME scheme, if a packet matches the
SFC table at the ingress switch, a SAFE-ME header is gener-
ated and inserted after the Ethernet header. The value of “Ether
Type” field in the Ethernet header is set to be “0 × 0123” to
announce that it is followed by a SAFE-ME header. As shown
in Fig 7, the switch saves the original Ethernet type of this
packet to the “Preserved Ether Type” field in the SAFE-ME
header for preservation. Then this packet is forwarded by
SAFE-ME tag-shifting and NF table matching scheme. When
it goes to the egress switch, the SAFE-ME header will be
removed, the original Ethernet type will be retrieved and
restored from the “Preserved Ether Type” field in the deleted
SAFE-ME header. Thus, an unmodified packet as the source
sent, is finally received by the destination and the SFC rules
are obeyed. Please note the field preservation method used
in SAFE-ME makes it suitable for any network protocols
employing type field to indicate the following header. The
matching and forwarding pipeline are implemented strictly
following the SAFE-ME work flow described in Fig 3.

E. Discussions

Applicability for the Consolidated Platform. NF consol-
idation (e.g., consolidating several NFs onto a server with
containers [40]) reduces the TCAM cost and control overhead
through simplifying the SFC processing in middlebox net-
works [25], [27], [28]. SAFE-ME addresses the complemen-
tary problem on how to optimally decide the routing selection
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for all requests and the rule installment at all switches. Thus,
our proposed solution can be combined with the consolidated
platform to achieve better network performance. Specifically,
under the consolidation architecture, we can regard each
consolidated platform as a mixed NF and encode SFC/NF
Table(s) based on the mixed NF(s). For example, we assume
that a request is required to traverse an SFC: Firewall-IDS-
Proxy. Leveraging container technology, we can implement all
three NFs onto a server (without loss of generality, denoted
as sc) under the consolidation architecture. Thus, we regard
sc as a mixed NF. On arriving at the network, the ingress
switch embeds sc (i.e., the server for SFC processing) into
the packet header of this request through matching SFC entry.
Then, we forward this request to sc for NF processing through
matching the NF entry. In the end, this request will be for-
warded to destination through matching Flow entry. It means
SAFE-ME can be applied for the consolidation architecture
with a little modification.

Flexibility of Implementing SAFE-ME. For some pro-
grammable switches (e.g., Open vSwitches [41], P4-based
barefoot switches [34]), it is not difficult to add new fields,
such as Tag Match Field and Tag Storage Field, to embed the
SFC policy into the packet header. In fact, the development of
programmable data plane technology such as P4 has reduced
the difficulty of implementing a SAFE-ME style data plane
and thus, has greatly improved the feasibility of SAFE-ME.
For other SDN switches, we can leverage some existing
protocol header fields (i.e., VLAN tags, MPLS labels, etc.)
to embed the SFC policy [2], [23]. Meanwhile, the shift
operation is a basic and high-speed function [42]. Thus, the
tag operations in SAFE-ME can achieve line rate if the switch
supports shift operation (e.g., Open vSwitches [41], barefoot
switches [34]). However, some switches may not support shift
operation. Under this situation, we can leverage NF units
or deploy a software programmable switch (e.g., OVS) on
each server running the NFs to fulfill the shift operation.
Specifically, when a packet arrives at a required NF, the NF
or the software switch will shift the tag in the packet header
before returning to the switch so that the packet will match
the next required NF. FlowTags [23] has illustrated that these
operations are lightweight (<0.5% cost) for an NF to modify
the packet header. Thus, SAFE-ME is quite compatible with
legacy networks and easy to be implemented.

Applicability for Network Function Virtualization
(NFV). In NFV networks, most existing works also adopt
the per-request routing strategy [24], [43] or consolidated
platform [28], [44] to schedule flows. Thus, similar to MB
networks, NFV networks will also encounter routing loops,
traffic dynamics and scalability problems, due to the disad-
vantages of existing solutions as shown in Table I. SAFE-ME
can be applied to NFV networks with some modifications.
More specifically, in NFV networks, several virtual network
functions (VNF) may be configured on one physical server.
It means that packets processed by one VNF may go through
the next VNF rather than return to the switch. To be applicable
under this situation, SAFE-ME only needs some modifications.
For example, if the switch is connected to two following NFs,
the switch will delete the first two NFs and write the second

NF in the Tag Store Field to the Tag Match Field. These
modifications are easy to implement.

Applicability for Large-Scale Networks. In a large-scale
network with a large number of NFs, SAFE-ME will need
more bits to identify the NFs of the SFC in its header.
To be applicable under this situation, we present two solutions.
(I) The coarse-grained tag mapping scheme. In this scheme,
SAFE-ME can use the tag to identify a set of NFs with the
same type (e.g., they are all IDS, etc.) instead of representing
a single NF. The packet that matched the NF table entry
will be forwarded to one NF selected by a user-defined
method from a set of NFs sharing the same type. Since
the types of NFs are usually much less compared with the
quantity of NFs, this coarse-grained tag mapping scheme can
significantly reduce the tag bit length in use, but may degrade
the routing performance. Thus, there is a trade-off between
the two different tag mapping schemes for different network
scales and scenarios. (II) The region-based tag reuse scheme.
A large-scale SDN network may use a distributed control
plane containing several controllers [45]. Each controller may
manage a set of switches that forms a local region. In this
way, SAFE-ME can reuse the same tag to identify different
NFs in the context of different regions. This tag reuse scheme
can also significantly reduce the SAFE-ME tags’ bit length.

Comparison with Segment Routing over IPv6 (SRv6).
To enforce the policy for SFC, SRv6 [46] adopts a source
routing mechanism by using an ordered list of tags (each
tag is a 128-bit length IPv6 address) in the segment routing
header [47]. Both SRv6 and SAFE-ME are based on source
routing and tag-based forwarding mechanisms, but SAFE-ME
is explicitly designed for scalable and flexible middlebox
routing. Specifically, SAFE-ME takes advantage of the pro-
grammable data plane for scalable and flexible SFC routing
using specialized header formats and high-speed label shifting
operations. Meanwhile, by installing flow rules with different
priorities on switches, SAFE-ME can realize dynamic and
flexible rerouting without changing the content of the packets,
which meets complex middlebox routing requirements.

V. CONTROL PLANE DESIGN

A. Default Path Construction (DPC) for SFC Routing

Once the network topology is established, the controller
can obtain the topology information, such as the loca-
tions/connections of all switches and NFs, through classical
OpenFlow APIs. The data plane topology can be modeled as
a directed graph G = (U ∪ V ∪ N, E), where U , V , N and
E denote the server set, the switch set, the NF set and the
directed link set, respectively. As described in Section II-A,
the traditional default path solution cannot be directly applied
for middlebox networks. Thus, we propose novel multi-level
(i.e., policy-level, NF-level and switch-level) default paths for
SFC routing.

1) Policy-Level Default Path Construction: In the middle-
box networks, the network operator usually specifies different
sequences of NFs (i.e., SFCs) for different requests. For
example, in Fig. 4, the operator may specify that requests
from subnet 10.1.1.0/24 (e.g., s1) have to traverse an SFC:
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Firewall-IDS-Proxy for security benefits. The DPC module
will transform this specification into policy-level default paths
and install corresponding entries in the SFC Table of the
ingress switch.

2) NF-Level Default Path Construction: DPC first leverages
classical algorithms (e.g., OSPF or ECMP) to compute default
path(s) from each switch to each NF. Each switch then stores
the next-hop information on the default path to each NF in the
NF Table so that each packet will be processed by the required
NF(s) in sequence. As a result, each switch will install |N |
entries in the NF Table for NF-level default paths construction.

3) Switch-Level Default Path Construction: Similarly, DPC
leverages classical algorithms to compute default path(s) from
each switch to each egress switch. The controller then installs
switch-level wildcard rules in the Flow Table of each switch
through Flow-Mod messages. Moreover, each egress switch
will install one rule for each connected destination. For
example, in Fig. 4, switch v1 installs two rules in Flow Table:
one for egress switch v3 and the other for the connected
destination s1.

4) Handling Switch/NF/Link Failures: Although the net-
work topology is expected to be stable to a large extent,
we may still encounter switch/NF/link failures in practice.
In such cases, the controller needs to construct new default
paths and install/update rules on switches. For the single
NF/link/switch failure scenario(s), we can address this issue by
pre-computing alternative default paths. For multi-NF failures,
SAFE-ME only needs to modify the affected SFC entries
so as to redirect requests to other available NFs. For multi-
link/switch failures, we re-compute default paths and update
corresponding rules on switches. With the help of our data
plane design, SAFE-ME can deal with various failure events
only by modifying a small number of rules, which will be
verified in Section VI-B.

B. Lightweight SFC Routing Update for Traffic Dynamics

With the help of multi-level default paths, requests will
be forwarded to destinations while obeying SFC policies.
Default paths help to save TCAM resources and relieve control
overhead, but they cannot guarantee the network performance
(e.g., NF/link load balancing or throughput maximization), due
to traffic dynamics. Thus, we design the Lightweight SFC
Routing Update (LSRU) module by joint default paths and
per-request paths for network optimization.

1) Exploration of Feasible SFC Paths: In middlebox net-
works, each request may have to traverse multiple NFs in
sequence. The number of feasible SFC routing paths for each
request may be exponential and the network performance
will be affected by the selection of SFC routing paths. Thus,
we compute a set of feasible paths that satisfy SFC policy for
each request. To decrease time complexity, we pre-compute
the feasible SFC path set for each request only when topology
changes. The feasible path set can be computed by traditional
algorithms, such as depth-first search. We give an example
to illustrate the exploration of feasible paths. Assume that
requests from s1 to s2 need go through FW-IDS and there
exists 2 FWs and 3 IDSs. We can compute k-shortest paths

using Yen’s algorithm [48] from s1 to each FW, from each
FW to each IDS, from each IDS to s2, respectively. This
algorithm computes single-source k-shortest loopless paths on
a graph with non-negative edge cost. By this way, there exists
2 · k feasible paths from s1 to FWs, 6 · k feasible paths from
FWs to IDSs, and 3 · k feasible paths from IDSs to s2. As a
result, we have explored 36 · k3 feasible paths from s1 to
s2 while satisfying the SFC policy. If there are too many of
them, we may include only a certain number (e.g., 3-5) of best
ones under a certain performance criterion, such as having
the shortest number of hops or having the large capacities.
Note that, the exploration of feasible paths is pre-computed
and only triggered by topology changes. During the update
process (Section V-B.3), we can select one optimal SFC path
from the feasible paths set for each request.

2) Installment of a Feasible SFC Path: When the controller
decides to re-route a request from its default path to another
feasible path p, under the traditional wisdom, the controller
will deploy one forwarding rule for each switch that appears on
path p. Thus, totally ω forwarding rules are deployed, where
ω is the number of times switches appear on path p [2].
However, this scheme will cost many entries and lead to
massive control overhead. To reduce the resource cost, we can
leverage SAFE-ME to install default rules so as to improve
network scalability. Since each ingress switch only maintains
one SFC entry in SFC Table for each request from this ingress
switch, we just consider the forwarding entry cost on the Flow
Table and the NF Table.

Let variables In(f, p, v) and If (f, p, v) (both initialized
to 0) denote the number of required NF entries and the
number of required flow entries on switch v, respectively,
as the route of request r is updated to the target path p.
Assume that the request r has to traverse q NFs, denoted as
NF1, NF2, . . . , NFq , respectively. We determine the values
of In(f, p, v) and If (f, p, v) as follows: 1) We divide the
path p into q + 1 path segments (i.e., ingress switch to NF1,
NF1 to NF2, . . . , NFq to egress switch). 2) We use pd to
denote each path segment on path p, where d is the destination
of this path segment. For example, pNF1 denotes the path
segment from ingress switch to NF1. 3) For each switch
v on pd, if path segment pd overlaps with the default path
from switch v to d, then there is no need to deploy an
entry for this path segment on switch v; otherwise, a flow/NF
entry on switch v for this path segment should be deployed.
If d is an NF, In(f, p, v) = In(f, p, v) + 1, which means
an NF entry should be deployed on the NF Table. If d is a
server, If (f, p, v) = If (f, p, v)+1, which means a flow entry
should be deployed on the Flow Table. After traversing all path
segments and all switches on path p, we obtain the values of
variables In(f, p, v) and If (f, p, v).

3) Problem Definition for SFC Routing Update: We denote
the set of switches as V = {v1, . . . , v|V |}, the set of servers
as U = {u1, . . . , u|U|}, and the set of NFs as N =
{n1, . . . , n|N |}. The data plane topology is modeled as a graph
G = (U ∪ V ∪ N, E), where E is the set of links. Let c(e)
(or c(n)) be the capacity of a link e (or an NF n) and l(e)
(or l(n)) be its current load. The switches measure traffic
loads on all their ports (i.e., adjacent links) and make the

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:43 UTC from IEEE Xplore.  Restrictions apply. 



2254 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

information available to the controller through OpenFlow [49]
or other statistics collection mechanisms [50], [51]. Since each
middlebox is directly connected with a switch, the switch
can also measure the middlebox load through port statistics
collection.

When the network performance gets worse (e.g., higher
link/NF load), the controller selects a subset Π of the largest
requests (reported by the switches) for re-routing so as to
achieve various performance optimization. The budget for
re-routing execution time constraints the size of Π. More
execution time budget means we can re-route more requests,
which can be roughly estimated based on the past executions.
The estimated rate of request f ∈ Π is denoted as r(f), which
can be obtained through switches. Let P(f) be the set of
feasible paths for request f . P(f) is determined based on the
management policies and performance objectives, as discussed
in Section V-B.1. Note that, P(f) also contains the path p∗(f)
that the request is currently routed through.

Let T n(v) and T f(v) be the number of residual entries in
the NF Table and the Flow Table, respectively, at switch v.
Let In(f, p, v) (or If (f, p, v)) be the number of required NF
entries (or flow entries) on switch v if path p is assigned
to request f , which has been discussed in Section V-B.2.
Note that, the number of required SFC entries is related to
the number of requests and is independent of update process.
Thus, we do not consider the SFC Table constraint here.
We formalize the lightweight SFC routing update problem in
middlebox networks (LSRU-MB) as follows:

min λ

s.t.

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

b(e) = l(e) −
∑

f∈Π:e∈p∗(f)

r(f), ∀e ∈ E

b(n) = l(n) −
∑

f∈Π:n∈p∗(f)

r(f), ∀n ∈ N

∑
p∈P(f)

yp
f = 1, ∀f ∈ Π

∑
f∈Π

∑
p∈P(f):v∈p

yp
f

·In(f, p, v) ≤ T n(v), ∀v ∈ V∑
f∈Π

∑
p∈P(f):v∈p

yp
f

·If (f, p, v) ≤ T f (v), ∀v ∈ V

b(e) +
∑

f∈Π

∑
p∈P(f):e∈p

yp
fr

×(f) ≤ λ · c(e), ∀e ∈ E

b(n) +
∑

f∈Π

∑
p∈P(f):n∈p

yp
fr

(f) ≤ λ · c(n), ∀n ∈ N

yp
f ∈ {0, 1}, ∀p, f

λ ≤ 1.

(1)

where yp
f ∈ {0, 1} means whether request f will be forwarded

through path p ∈ P(f) or not. The first and second sets
of equations compute the link background traffic load b(e),
∀e ∈ E, and the NF background traffic load b(n), ∀n ∈ N ,
when the flows in Π are taken out. The third set of equations
requires that request f ∈ Π will be forwarded through a single
path from P(f). The fourth set of inequalities describes the
NF table size constraint, while the fifth set of inequalities
describes the flow table size constraint on switches. The sixth

and seventh sets of inequalities indicate that the traffic load
on each link e and each NF n, respectively, where λ is called
as the load-balancing ratio.

The optimization objective is to minimize λ. Achieving load
balance among links/NFs helps prevent large queuing delays
that happen when λ approaches towards 1. Moreover, it also
leaves room for new requests or allows the existing requests
to increase their rates for better network throughput.

Theorem 1: LSRU-MB defined in Eq. (1) is an NP-hard
problem.

Proof: We consider a special example of the LSRU-MB
problem, in which only one flow needs to traverse one
middlebox. This special case of LSRU-MB has been proven
to be NP-hardness [52]. Thus, the LSRU-MB problem is
NP-Hard too. �

4) Algorithm Design: In this section, we present an approx-
imate algorithm, called Rounding-based SFC Routing Update
(RBSU), to solve this problem. We first relax Eq. (1) by
replacing the eighth line of integer constraints with yp

f ≥ 0,
turning the problem into linear programming. We can solve
it with a linear program solver (e.g., CPLEX [53]) and the
solution is denoted by ỹ and λ̃. As the linear program is a
relaxation of the LSRU-MB problem, λ̃ is a lower-bound result
for LSRU-MB. Using randomized rounding method [54],
we obtain an integer solution ŷp

f . More specifically, variable
ŷp

f is set as 1 with the probability of ỹp
f . The RBSU algorithm

is formally described in Algorithm 1.

Algorithm 1 RBSU: Rounding-Based SFC Routing Update
for Middlebox Networks
1: Step 1: Solving the Relaxed LSRU-MB Problem
2: Construct a linear program by replacing the integral con-

straints with yp
f ≥ 0

3: Obtain the optimal solution {ỹp
f}

4: Step 2: Route Update for Middlebox Networks
5: Derive an integer solution {ŷp

f} by randomized rounding
6: for each sampled flow f ∈ Π do
7: for each SFC route p ∈ P(f) do
8: if ŷp

f = 1 then
9: Appoint a path p for flow f

10: end if
11: end for
12: end for

5) Approximation Performance Analysis: We analyze the
approximate performance of the proposed RBSU algorithm.
Assume that the minimum capacity of all the links and NFs
is denoted by cmin and the set of all flows is denoted as Γ.
We define a constant α as follows:

α = min{min{ λ̃cmin

r(f)
, f ∈ Γ}, min{T n(v), T f(v), v ∈ V }}

(2)
Lemma 2: Taking the optimal solution obtained from the

set of the feasible paths exploited in Section V-B.1 as a
benchmark, the proposed RBSU algorithm can achieve the
approximation factor of 3 log n

2α + 2 for link/NF capacity con-
straints in large networks, where n is the number of switches.
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Proof: We denote the traffic load of link e ∈ E from flow
f ∈ Γ as xf,e. According to the definition, xf1,e, xf2,e, . . . are
mutually independent. The expected traffic load on link e is:

E

⎡
⎣∑

f∈Γ

xf,e

⎤
⎦ =

∑
f∈Π

[xf,e] + b(e)

=
∑
f∈Π

∑
e∈p:p∈P(f)

ỹp
f · r(f) + b(e) ≤ λ̃c(e) (3)

Combining Eq. (3) and the definition of α, we have⎧⎪⎪⎪⎨
⎪⎪⎪⎩

xf,e · α
λ̃c(e)

∈ [0, 1]

E

⎡
⎣∑

f∈Γ

xf,e · α
λ̃ · c(e)

⎤
⎦ ≤ α.

(4)

Thus, Chernoff bound [15] can be applied. Assume that ρ
is an arbitrary positive value. It follows

Pr

⎡
⎣∑

f∈Γ

xf,e · α
λ̃ · c(e)

≤ (1 + ρ) · α
⎤
⎦ ≤ e

−ρ2·α
2+ρ

⇔ Pr

⎡
⎣∑

f∈Γ

xf,e

λ̃ · c(e) ≤ (1 + ρ)

⎤
⎦ ≤ e

−ρ2·α
2+ρ (5)

Now, we would assume that

Pr

⎡
⎣∑

f∈Γ

xf,e

λ̃ · c(e) ≥ (1 + ρ)

⎤
⎦ ≤ e

−ρ2·α
2+ρ ≤ 1

n
(6)

We know that 1
n → 0 when the network grows. By solving

Eq. (6), we have the following result

ρ ≥ log n +
√

log2 n + 8α log n

2α
, n ≥ 2

⇒ ρ ≥ log n +
√

(2 logn + 2α)2

2α
=

3 logn

2α
+ 1, n ≥ 2

(7)
Thus, the approximate factor for link capacity constraints is

ρ+1 = 3 log n
2α +2. Similarly, we can obtain the approximation

factor for the NF capacity constraints. �
Lemma 3: In most practical scenarios, e.g., α ≥ 3 log n,

the proposed RBSU algorithm can achieve the approximation
factor of 2 for link/NF capacity constraints.

Proof: When α ≥ 3 logn, by solving Eq. (6), we have:

ρ ≥ log n +
√

(log n − 2α)2 − 4α2 + 12α log n

2α
, n ≥ 2

⇒ ρ ≥ log n +
√

(log n − 2α)2

2α
⇒ ρ ≥ 1 (8)

Thus, the bound can be tightened to ρ + 1 = 2. �
Lemma 4: Taking the optimal solution obtained from the

set of the feasible paths exploited in Section V-B.1 as
a benchmark, after the rounding process, the amount of
required flow/NF entries on any switch v will not exceed
the number of residual flow/NF entries by a factor of
3 log n

2α + 2 in large networks, where n is the number of
switches.

Lemma 5: In most practical scenarios, e.g., α ≥ 3 log n,
the proposed RBSU algorithm can achieve the approximation
factor of 2 for flow/NF table size constraints.

The proofs of Lemmas 4 and 5 are similar to that of
Lemmas 2 and 3, thus we omit the detailed proofs here.

Approximation Factor: Following from our analysis, the
capacity of links/NFs will hardly be violated by a factor of
more than 3 log n

2α +2, and the flow/NF table size constraints will
not be violated by a factor of 3 log n

2α +2. Thus, we can conclude
that RBSU can achieve the bi-criteria approximation factor of
(3 log n

2α + 2, 3 log n
2α + 2). Under proper assumption (i.e., α ≥

3 logn), the bound can be tightened to (2, 2). It means that
RBSU can minimize the network load ratio to no more than 2λ̃
and the flow/NF table size constraints are violated at most by
a multiplicative factor 2. Note that, as to the cases where the
flow/NF table size constraints are violated, the default entries
will take effect to transfer these extra flows, avoiding packets
dropping.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the scalability and efficiency of
SAFE-ME. All code is publicly available on Github.1 We first
give the metrics and benchmarks for performance comparison
(Section VI-A). We then perform a small-scale test with P4
switches and give the performance analysis (Section VI-B).
Finally, we evaluate the performance of several middlebox
systems with large-scale simulations (Section VI-C). Note that,
we also implement SAFE-ME with OVS and the conclusion
agrees with the above results. Due to the limited space,
we omit the description of the experiment results with OVS.
The reader can refer [1] for the detailed description.

A. Performance Metrics and Benchmarks

Performance Metrics: We adopt the following three sets
of metrics to evaluate the scalability and efficiency of our
proposed system. 1) SAFE-ME involves tag operations, which
may increase the packet transmission delay and decrease
the end-to-end throughput. Thus, we adopt end-to-end delay
and end-to-end throughput to evaluate the efficiency of tag
operations. Specifically, we use Ping and Qperf [55] tools to
measure the delay of ICMP and TCP/UDP protocols between
two servers, respectively. In our implementation, some flows
are aggregated into one request. We use Packet Generator (Pkt-
Gen) tool [56] to measure its flow completion time (FCT).
Besides, we adopt vnStat tool [57] to measure the end-to-
end throughput, which can evaluate the negative impact of
tag operations on the packet forwarding rate. 2) Considering
traffic dynamics (e.g., request intensity fluctuation), we need
re-route flows to better deal with traffic dynamics (i.e., execute
the RBSU algorithm). During the update process, we focus
on two metrics: update delay and control traffic overhead.
Specifically, we measure the duration of the update procedure
as update delay. Moreover, we record the total traffic amount
between the control plane and the data plane during the update
procedure as control traffic overhead. Obviously, lower update
delay and control traffic overhead represent better network
update performance. After route update, we measure the total
number of required entries on three tables of each switch
and the link/NF Load on each link/NF. Accordingly, we can
obtain the maximum value and CDF performance of these

1https://github.com/xipeng-ahnu/SAFE-ME/tree/master.
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Fig. 8. Telstra topology. Circles represent switches and squares
represent NFs.

metrics. 3) Network failure is a common scenario in today’s
networks. Thus, we measure the failure response time to
deal with various network failures, such as single/multiple
NF/link/switch failures. We measure the duration from failure
occurrence to failure recovery as failure response time.

Benchmarks: We compare SAFE-ME with other two
benchmarks for evaluation. The first benchmark is the most
related work, SIMPLE [2], which is an SDN-based pol-
icy enforcement layer to simplify middlebox traffic steering.
To account for both the middlebox processing capacity con-
straint and the TCAM table size constraint, SIMPLE first
pre-computes several feasible physical sequences for each
request while tackling the switch resource constraints, and
then chooses a physical sequence for each request to mini-
mize the maximum middlebox load. The second benchmark
is an online algorithm, called primal-dual-update-algorithm
(PDA) [4]. PDA achieves the trade-off optimization between
the throughput competitiveness and QoS requirements under
both link and NF capacity constraints. Note that, due to the
inapplicability of traditional default path solutions as shown
in Section II-A, we have not found prior work in this direc-
tion. Thus, we decided to compare SAFE-ME with SIMPLE
and PDA, two solutions that schedule and forward traffic at
granularity of requests.

B. Small-Scale Experiments With P4 Software Switch

P4 implementation of SAFE-ME: To enhance our work,
we implement SAFE-ME on a software data plane consisting
of switches based on P4. The P4 software switches named with
simple_switch_grpc base on the behavioral model version 2
(bmv2) [58] are employed to construct our small-scale topol-
ogy called Telstra from the Rocketfuel dataset [59], as depicted
in Fig. 8.

Experimental Settings: Since the topology Telstra does not
provide NF information, we utilize VNF mechanism [36] to
deploy three types of NFs (i.e., Firewall, IDS, and Proxy) and
place 3 units for each type of NF for simplicity. In other words,
we deploy total 3 × 3.9 NFs on the Telstra topology. We run
each P4 software switch on a Ubuntu 16.04 server (kernel ver-
sion 4.15.0-142) with Xeon Gold 6152 processor and 128GB
of RAM, each NF installed on a high-end workstation with
Intel Core i9-10900 processor and 64GB of RAM and each
host with Intel Core i5-10400 processor and 16GB of RAM.
We write P4 programs for SAFE-ME, PDA and SIMPLE.
By utilizing P416 compiler (p4c-bm2-ss) [60], we compile

Fig. 9. CDF vs. request size generated by packet generator on Telstra.

Fig. 10. No. of requests vs. FCT on Telstra.

and load them into the P4 software switches to run the data
plane. For the control plane, we use a server with the same
hardware as the switch to implement the algorithms for the
three schemes, and use gRPC [61] protocol to control the
P4 data plane. Links between switches or switch-to-NF are
10Gbps, other links including switch to host and switch to
controller are 1Gbps.

We use PktGen [56] to generate network traffic, which is
a software based traffic generator also used by [62], [63].
By using PktGen, we can generate requests with various
sizes and patterns, and collect FCT, load information through
PktGen APIs. In the experiments, we generate DCTCP (data
center TCP) pattern requests [56] and the request size distri-
bution is shown in Fig. 9. All requests have to traverse either
Firewall-IDS-Proxy or Firewall-IDS.

FCT and Throughput Performance: In the first set of
experiments, we generate TCP requests with a duration of 30s
and measure the FCT and end-to-end throughput performance.
The end-to-end throughput can be derived by the vnStat
tool [57] through measuring the average throughput of one
server port per 6-second interval. The results in Figs. 10-13
show that our proposed SAFE-ME system achieves similar
FCT and throughput performance compared with other two
algorithms. They also fit our previous work using OVS. Thus,
we can conclude that the tag operations of SAFE-ME are
lightweight and will not significantly impact the network
performance.

Update Performance: In the second set of experiments,
we conduct the traffic dynamics, which require to dynamically
adjust routing paths and update forwarding entries for load
balancing. In Fig. 11, FCT of nearly 50% requests is less
than 10ms. Thus, if we update routing paths at a low
speed, the network performance will be greatly reduced.
Figs. 14-15 show that SAFE-ME can reduce update delay
and control traffic overhead by about 87% and 85%,
respectively, compared with other two solutions. This lower
update delay is enabled by the reduced number of required
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Fig. 11. CDF of FCT on Telstra.

Fig. 12. FCT vs. request size on Telstra.

Fig. 13. Avg. throughput vs. time on Telstra.

Fig. 14. Update delay vs. no. of requests on Telstra.

entries (by about 89%) for updating compared to other
algorithms, as shown in Fig. 16. The rule installation
speed is about 0.517 ms/rule on P4 software switches by
our test, which is almost twice that of using OVS and
will significantly affect update performance. Figs. 17-18
show link/NF load conditions for these three systems. Using
Alg. 1, SAFE-ME achieves better link load balancing and
similar NF load balancing compared with SIMPLE/PDA. For
example, by Fig. 17, SAFE-ME reduces the maximum link
load by about 12% and 16% compared with SIMPLE and
PDA, respectively. Note that, we can also tweak RBSU to
work for the other two schemes and obtain a similar link/NF
load balancing performance. However, without the support of
the SAFE-ME’s data plane, both SIMPLE and PDA would
still require a higher number of flow entries, causing larger
control overhead and longer update delays, similar to what is
shown in Figs. 14-16, even after adopting RBSU.

Fig. 15. Control traffic overhead vs. no. of request on Telstra.

Fig. 16. No. of entries on each switch on Telstra.

Fig. 17. Link load of each link on Telstra.

Dealing with Failures: The network may encounter
switch/NF/link failures in practice. We consider four fail-
ure scenarios on the Telstra topology: (I) single-NF failure,
(II) single-link/switch failure, (III) multi-NF failures, and
(IV) multi-link/switch failures. Under all four scenarios, the
controller should re-route requests and we focus on the failure
response delay to reconfigure the network. When network
failure occurs, the controller needs to be aware of failures,
compute new rules and install them on switches. For single
NF/link/switch failure scenario(s), PDA takes more time to
compute and install new rules. SIMPLE pre-computes pruned
sets for the single NF failure scenario. Thus, the time cost is
mainly for installing rules on switches in SIMPLE. SAFE-ME
only adjusts fewer affected SFC entries to embed requests with
other available NFs (e.g., nearest available NFs). The number
of updated entries for route update of SAFE-ME is less than
that of other two benchmarks. Thus, the results in Fig. 19 show
that SAFE-ME can reduce the failure response time by about
90% and 85% compared with PDA and SIMPLE, respectively.

From these experimental results, we can conclude that with
the support of the SAFE-ME’s data plane, SAFE-ME can
greatly improve scalability (e.g., TCAM cost, update delay,
control overhead and response time) compared with state-of-
the-art solutions.

Authorized licensed use limited to: University of Science & Technology of China. Downloaded on November 14,2022 at 07:43:43 UTC from IEEE Xplore.  Restrictions apply. 



2258 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 30, NO. 5, OCTOBER 2022

Fig. 18. NF load of each NF on Telstra.

Fig. 19. Response time vs. failures on Telstra2.

Fig. 20. Max. no. of entries vs. no. of requests on Ebone.

C. Large-Scale Simulations

To complement small-scale testbed experiments, we con-
duct large-scale simulations to deep-dive into SAFE-ME. Our
simulation results further confirm the superior performance of
SAFE-ME compared with other two benchmarks.

Simulation Settings: In the large-scale simulations, we use
packet traces of our campus network, which is shared
at Github.3 We simulate the traces across the Rocketfuel
project [59], called Ebone, which contains 87 switches and
348 servers. Since this topology does not provide any NF
information, similar to small-scale experiments, we adopt VNF
placement scheme [36] to deploy 5 types of NFs (i.e., Firewall,
IDS, IPSec, Proxy and WAN-opt) and the number of each type
of NF is set as 10 by default. In other words, we deploy totally
5× 10.50 NFs on the Ebone topology. There exist four SFCs
(i.e., FW-IDS-IPSec, FW-Proxy, FW-IDS-IPSec-WAN-opt and
IDS-Proxy), and each request will be assigned with one of
SFC requirements. Note that, since the campus network is
different from Ebone, we use a gravity model to map requests
to ingress/egress switches [59]. We execute each simulation
50 times and average the numerical results.

Flow Entry Resource: We first compare the required entry
resources of these three systems. As shown in Figs. 20-21, with
the increasing number of requests, the maximum and average

2I: single-NF failure, II: single-link/switch failure, III: multi-NF failures,
IV: multi-link/switch failures.

3Traces are shared at https://github.com/xipeng-ahnu/SAFE-ME/tree/
master/trafficTrace

Fig. 21. Avg. no. of entries vs. no. of requests on Ebone.

Fig. 22. CDF vs. no. of required entries on Ebone.

Fig. 23. Max. link load vs. no. of requests on Ebone.

number of required entries increases for all systems. In com-
parison, the proposed SAFE-ME system uses much fewer
entries than other two solutions. For example, when there
are 36×103 requests, SAFE-ME uses a maximum number of
11,900 entries among all switches, while SIMPLE and PDA
use 36,500 and 29,500 entries, respectively; SAFE-ME needs
2,600 entries on average, while both SIMPLES and PDA need
about 9,000 entries. In other words, SAFE-ME can reduce the
maximum number of required entries by about 68% and 60%
compared with SIMPLE and PDA, respectively. Meanwhile,
SAFE-ME reduces the average number of required entries by
about 71% compared with the other two solutions. Fig. 22
shows the CDF of the number of entries under a fixed
number (e.g., 36×103) of requests. We observe that about
2.2% of switches need more than 8,000 entries by SAFE-ME,
while over 45% of switches need more than 8,000 entries by
SIMPLE and PDA.

Bandwidth Resource: Figs. 23-25 give the comparisons
of bandwidth resource consumption for these algorithms.
We claim that SAFE-ME can save bandwidth resources
through well-designed routing strategy. For example, when
there are 36×103 requests, our proposed algorithm can reduce
the maximum/average link load by about 23%/28% and
51%/30% compared with SIMPLE and PDA, respectively.
Fig. 25 shows the CDF of link load ratio under a fixed number
(e.g., 36×103 ) of requests. We observe that over 64% of links
undertake load less than 4Gbps while only 53% (or 51%) of
links undertake load less than 4Gbps by SIMPLE (or PDA).

NF processing Resource: Figs. 26-27 show the com-
parisons of NF loads for different algorithms. From these
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Fig. 24. Avg. link load vs. no. of requests on Ebone.

Fig. 25. CDF vs. link load on Ebone.

Fig. 26. Max. NF load vs. no. of requests on Ebone.

Fig. 27. CDF vs. NF load on Ebone.

two figures, we observe that SAFE-ME can achieve similar
NF load performance compared with both SIMPLE and PDA.
Note that, since we assume all requests can be served by the
required NFs, the average NF loads of these solutions are the
same.

From these simulation results, we can draw some conclu-
sions. First, from Figs. 20-22, SAFE-ME reduces the number
of required entries by about 70% on average compared with
other two solutions for serving all requests in the network.
Second, from Figs. 23-25, SAFE-ME reduces the link load
by about 30% on average compared with SIMPLE and PDA.
Finally, from Figs. 26-27, we believe SAFE-ME can achieve
similar NF load compared with SIMPLE and PDA, which
consume more entry and bandwidth resources than SAFE-ME.

VII. CONCLUSION

In this paper, we leverage the advantages of SDN to
proactively deploy NF-based default paths so that requests can

be forwarded to destination while obeying SFC policy with
less resource (e.g., TCAM) consumption. We further study the
joint optimization of default path and per-request routing to
update the SFC routing paths. With the help of default paths,
we only need modify fewer rules when encountering traffic
dynamics or link/switch/NF failures, which means SAFE-ME
greatly reduces response time for network failures and update
delay for re-route process.
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